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ABSTRACT 
The risk of levee overtopping has increased because of the frequency of severe rain storm due to 
climate change. Flow depth over levees is a design parameter that must be considered, but standards 
have not been agreed on. In this study, the mechanisms of levee overtopping are investigated by 
analyzing the water surface profile in an open channel with side-overflow using a 2D shallow water 
model on an unstructured triangular mesh system. Scenarios in which the channel capacity decreases 
downstream were considered; the first when the channel slope decreases and the second a “Y-shape” 
confluence of two river channels. The computation for the slope changing channel exhibited the 
following results: (1) levee overtopping occurred not only in the downstream channel but also in the 
upstream channel due to the backwater effect, (2) the overflow depth was much smaller than the value 
predicted for normal flow without side-overflow, and (3) the water stage at the levee crown was lower 
than the transversely averaged one around the slope change section due to the 2-D flow effect. The 
computational results for the confluent channel had the tendencies common to those for the slope 
changing channel, but further showed: (4) the overflow depth anomaly appeared at the inner corner of 
the confluence with an increase in the confluent angle, which suggested that the delta area between 
the confluent channels could be used as a detention basin by armoring the short reach at the corner. 
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1 INTRODUCTION 
Global climate change has increased the frequency of rain runoff exceeding the capacity of 
conventional flood control measures, and several recent flood disasters have been caused by 
levee overtopping. Increasing river channel capacity is often difficult because of intensive 
land use, so reinforcement of earth levees by surface armoring is considered for mitigation 
(JSCE report, 2008). However, standards of overflow depth for levee armoring design have 
not been defined. 

Suga et al. showed that a simple pavement on the levee crown would prolong the life 
of earth levees significantly when the overflow depth is less than 20 cm based on the results 
of hydraulic model tests [1]. Ishikawa presented a 1-D perturbation analysis of the water 
surface profile for prismatic channel flow with side-overflow and suggested that the levee 
overflow depth is significantly lower than the value predicted for normal flow without side-
overflow [2]. According to a recent flood report [3], a newly constructed earth levee with a 
uniformly paved levee crown endured against failure for a long duration during overtopping 
because the overflow was evenly distributed over a long distance. This suggests that a 
relatively light levee crown pavement can mitigate against overtopping if the overflow 
depth is not large. 

In this study, the basic characteristics of levee overtopping were numerically 
investigated on open channel flow with side-overflow using a 2D shallow water model. 
Two conditions in which the channel capacity decreases downstream due to an abrupt 
decrease in channel slope (A-series) and a “Y-shape” confluence of two river channels (B-
series) were considered. 



2 METHODOLOGY 

2-1 Numerical model 

A shallow water flow model developed for tsunami run-up simulation [4] was used. In the 
model formulation, the hyperbolic differential equations were converted to finite difference 
equations by the finite volume method on an unstructured triangular mesh system [5], and 
the Eulerian method was adopted for calculating the flood front to avoid so-called “C-
property collapse” [6]. 

The flow rate over the levees was calculated using the following formula proposed 
by [7]: 
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where q is the unit width flow rate over the levee, and h1 and h2 are the water surface 
heights on the upstream and downstream sides of overflow from the levee crown, 
respectively. 

2-2 Experimental condition 

Fig. 1 shows the experimental conditions for the A-series experiment. The channel is a 
straight rectangular sectional channel having a constant width of 100 m and a constant 
levee height of 3 m, and the channel slope changes from θ1 to θ2 (the values of which are 
listed in Table 1). Manning’s roughness was assumed as 0.03. The upstream discharge was 
assumed as bankful discharge, and the downstream water surface level was assumed to be 
equal to the levee crown level. Levee overtopping was expected to occur around the slope 
changing section, as illustrated in the figure. 

Fig. 2 shows the experimental conditions for the B-series experiment. The channel 
slope θ3 and the levee height H0 were assumed to be constant throughout the entire channel 
reach. Three conditions were considered by changing the confluent angle θ4, as listed in 
Table 2. The upstream discharge and the downstream water surface level were the same as 
those for the A-series experiment. Levee overtopping was expected to occur around the 
confluence section. 

Table 1: A-series calculation conditions

Case # Upstream 
slope θ1 

Downstream 
slope θ2 

A-1 1/200 1/300 
A-2 Do. 1/400 
A-3 Do. 1/500 

Table 2: B-series calculation conditions

Case # Channel 
slope θ3 

Confluent 
angle θ4 

B-1 1/300 30 ° 
B-2 Do 60 ° 
B-3 Do 90 ° 
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CONCLUSION 
A series of 2-D numerical experiments on open channel flow with side-overflow were 
performed for conditions in which the channel capacity was decreased downstream due to 
an abrupt channel slope decrease and a “Y-shape” confluence. The conclusions are as 
follows: 
(1) Levee overtopping occurs not only in the downstream reach from the section with the 

channel capacity reduction but also in the upstream reach where the discharge is less than 
the bankful discharge due to the backwater effect. 

(2) The levee overflow depth is much smaller than the value predicted by the relationship 
for normal flow without side-over flow in most of the river reach except for a short reach 
around the section incorporating the channel capacity reduction caused by the river 
confluence. 

(3) A significant rise in water surface occurs at the inner corner just upstream from the 
confluent section, which induces a large overflow to the delta area between the confluent 
channels. The water surface anomaly over the levee crown increases with sin(θ4/2) 
where θ4 is the angle of confluence. 
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