福嶋先生の雪崩運動モデルの特徴とその課題

大澤 範一(株式会社 東京建設コンサルタント,長岡技術科学大学大学院)

1.はじめに

福嶋先生(以下福嶋,敬称略)の提案されたサーマ ル理論を基礎とする雪崩の運動モデルは,雪崩内に 浮遊している雪粒子の総量が底面からの巻き上げや 沈降によって流下に伴い変化する点や,乱流構造に よる運動形態への影響を考慮している点など雪崩の 運動を緻密に表現したものである.また.雪崩本体の 形状を半楕円体で仮定し,単純な常微分方程式の解 として速度や体積などの近似解が得られるラグラン ジェ的なモデルであるため,演算時間などの面でも 優れている、しかし、このモデルを用いて実際に数値 解析を実施するためには、基礎方程式中に含まれる 多くの未知数や無次元係数を構成関係式などによっ て仮定する必要がある.これら仮定条件の中には,雪 崩の形状や速度などの数値シミュレーション結果に 強い影響を及ぼすものも少なからず存在する.今回 は,福嶋の提案した雪崩運動モデルについて概略を 説明し,モデル中に含まれる,この「仮定条件」につ いて考察していく.

2.モデルの概要

福嶋は 1986 年に煙型雪崩を対象とした一次元解 析モデルを提案した.このモデルはその後,数値地図 (地形メッシュデータ)を用い雪崩本体の質量中心の 流下経路を推定する準二次元的な解析モデル(福 嶋・早川,1992),流動幅の影響を考慮し,解析領域を 雪崩全領域とした二次元解析モデルへとそれぞれ拡 張されている(大澤・福嶋,2004).

また,雪崩の進行方向上の積雪層からの雪塊の取 り込みや後方への離脱を質量保存式において考慮す る流れ型雪崩を対象とした一次元解析モデルも提案 されている(福嶋・大澤,2007).

何れのモデルも雪崩本体の形状は図-1に示すよう な半楕円体で仮定される.図中の *P_i* は雪崩上部界面 の周長,*P_b* は雪崩底面と地面との接地長,*h* は雪崩の 最大高さ, は斜面傾斜角, は雪崩の密度, *a* は周 囲空気の密度である.

図-2 計算フロー

数値解析の流れを図-2 に示す.前述した何れのモ デルも常微分方程式からなる基礎方程式をルンゲク ッタ法などにより解くことで雪崩の体積や速度など の近似解が導出される.斜面形状のモデル化につい ては,一次元解析モデルの場合,流下経路の地形縦断 形状を入力データとして与える必要があり,流下経 路を未知数として取り扱う二次元解析モデルの場合 は,数値地図から雪崩が影響を受ける斜面特性を時 間変化ごとに導出する必要がある.

Vo	雪崩の体積	b_{\max}	雪崩の最大広がり幅	$ au_i$	周囲空気との界面のせん断応力
S_i	空気との接地面積	Vs	雪粒子の沈降速度	$ au_b$	地面とのせん断応力
S_b	地面との接地面積	E_s	雪粒子の連行係数	α_{B}	最大広がり幅に関する無次元係数
\overline{U}_{abs}	雪崩進行方向の絶対速度	Ea	空気の連行係数	С	雪の平均濃度
U_x	x 方向速度ベクトル	K	乱れの運動エネルギー	C_b	雪の底面濃度
\overline{U}_y	y 方向速度ベクトル	CD	抗力係数	β	分子粘性逸散率の無次元係数
D_s	雪粒子の粒径	$ ho_s$	雪粒子の密度	<i>k</i> _v	付加重力係数

表-1 煙型雪崩二次元解析モデル係数一覧表

一例として煙型雪崩二次元解析モデルの基礎方程 式を以下に示す.(表-1に主な係数を整理する.)

空気の連続式

$$\frac{d}{dt}\rho \circ V_o = \rho a E a U abs S i \qquad (1)$$

雪の質量保存式

$$\frac{d}{dt}CV \circ = v_s \left(E_s - C_b \cos \theta\right) S_b \qquad (2)$$

乱れの運動エネルギーの保存式

$$\frac{d}{dt}(\rho + k_{v}\rho_{a})KV_{o} = (\tau_{i}S_{i} + \tau_{b}S_{b})U_{abs} + \frac{1}{2}\rho_{a}\left\{(1 + k_{v})E_{a}U_{abs}S_{i}\right\}$$
$$+ Rv_{s}\left(E_{s} - C_{b}\cos\theta\right)S_{b}\left\{U_{abs}\right\}^{2} - \rho_{a}Rgv_{s}V_{o}$$
$$- \beta\rho K^{3/2}V_{o} / h - \xi_{p}\rho_{a}Rg\cos\theta h$$
$$\times \left\{\frac{1}{2}CE_{a}U_{abs}S_{i} + v_{s}\left(E_{s} - C_{b}\cos\theta\right)S_{b}\right\} (3)$$

<u>x方向運動量方程式(y方向も同様に与える)</u> $\frac{d}{dt}(\rho + k_v \rho_a)U_x V_o = (\rho - \rho_a)gV_o \sin \theta_x$ $- (\tau_i S_i + \tau_b S_b) \frac{U_x}{U_{abs}}$ (4)

<u>最大広がり幅に関する式</u>

$$\frac{db_{\max}}{dt} = \alpha_B \left(\tan \theta \right)^{-0.264} U_{abs} \tag{5}$$

式(1)が空気の連続式であり雪崩の体積の時間変化 を推定する.式(2)は雪の質量保存式であり,雪崩内の 雪総量の時間変化を推定する.式(3)が乱れの運動エ ネルギーの収支式であり,これにより乱流構造が抵 抗に及ぼす影響などが別途構成関係式により評価さ れる.式(4)は運動量方程式で,運動エネルギーの時間

変化を推定する.式(5)は,最大広がり幅に関する式で あり,雪崩の流動幅の時間変化を推定する.

解析例として,図-3 に煙型雪崩二次元解析モデル を岐阜県左俣谷の地形メッシュデータに適用し数値 解析を行った場合の,雪崩中心部の流下経路及び流 動幅を示す.この解析結果では,雪崩が 2000 年に発 生した大規模な表層雪崩と同様の位置で停止に至っ ている.

3.モデルの課題

前述したように,福嶋の雪崩の運動モデルは,解析 を実施するために多くの条件を仮定する必要がある. 以下に運動形態に及ぼす影響が大きなものについて そのいくつかを考察する.

(1) 雪崩本体の形状

雪崩本体の形状については半楕円体で仮定され, Beghin et al.(1981)のサーマルに対する実験結果を参 考に以下の構成関係式より定義される.

$$V_o = \left(\frac{\pi}{6}\right) P_b b_{\max} h \tag{6}$$

$$P_i = \xi_i h \tag{7}$$

 $P_b = \xi_b h \tag{8}$

$$\xi_b = 8.47\theta^{-1/3} \tag{9}$$

$$\boldsymbol{\xi}_{i} = \frac{\boldsymbol{\pi}}{2\sqrt{2}} \left(\boldsymbol{4}\boldsymbol{\xi}_{b}^{2} + \boldsymbol{1} \right) \boldsymbol{\xi}_{b}$$
(10)

ここで ξ は形状係数である.式(6)~(10)の関係より, 初期条件として雪崩の高さ及び横方向の幅を設定し た時点で、雪崩の縦断方向の長さ P_b及び体積 V_aが一 義的に設定される.したがって式(6)~(10)の関係を 固定した場合、発生点からリリースされる雪崩本体 の体積(質量)をコントロールすることは困難である. 特に式(9)によって表される形状係数 どんは雪崩形状の 解析結果に対する影響が強く,これより雪崩の縦断 方向の長さ P_b及び高さ h は,斜面傾斜角 に依存し ていることがわかる.雪崩形状の変化に伴って,せん 断抵抗などが変化するため,運動形態に対してもこ れら形状に関する仮定は影響する.サーマルと雪崩 (特に流れ型雪崩の場合)にはその運動形態におい て異なる点があるため、これらの形状係数について、 検証することができればモデルの精度を向上させる ことが期待できる.

高速な雪崩は雪煙を巻き上げ,周囲の空気を内部 に連行する.大雪煙を巻上げることで知られる煙型

(2) 周囲空気の連行について

雪崩の場合は,周囲空気の連行が顕著であり,これに より斜面方向に対して爆発的に体積を増加させる. 式(6)~(10)より,雪崩の体積は直接的にその形状に 影響するため,運動エネルギーに対する影響も想定 される.この周囲空気の連行については,式(1)の空気 の連続式において評価される.再び書き表すと,

$$\frac{d}{dt}\rho_0 V_o = \rho_a E_a U_{abs} S_i \qquad (1)$$

左辺が雪崩体積の時間変化を表し,右辺が周囲空気の連行を表す.ここで,空気の連行係数*E*aが必要になる.連行係数*E*aは以下の式で表される.

$$E_a = \alpha \left(\theta / 90^\circ \right) \tag{11}$$

式(11)は大規模鉛直サーマルの実験式(Escudier et al,1973)であり,煙型雪崩のモデルでは,福嶋は =0.1 が適切であるとした.しかし, =0.1 は急勾配斜面を サーマルが流下する間の適正値であり,流下経路の 地形形状によっては,精査が必要である.また流れ型 雪崩を想定したモデルでは,煙型雪崩のように大雪 煙を巻上げることは無く,サーマルとは周囲空気の 連行に関するメカニズムも異なるため,現実的な解 析をするためには を比較的小さく設定する必要が 生じる.

(3) 雪の連行と離脱について

細粒子分の雪の雪崩底面からの巻き上げや沈降に ついては,式(2)の雪の質量保存式において評価され る.再び書き表すと,

$$\frac{d}{dt}CV \circ = v_s \left(E_s - C_b \cos \theta\right) S_b \qquad (2)$$

左辺が雪量の時間変化を表し、右辺のv_sE_sS_bが雪粒子の底面からの巻上げを、v_sC_bcos S_bが底面への沈降を表す.式中の雪粒子の連行係数E_sについては、開水路の浮遊砂流に対して得られた Garcia の式を用い以下のように与える.

$$E_{s} = \frac{A_{1}Z^{5}}{\left(1 + \frac{A_{1}}{0.3}Z^{5}\right)}$$
(12)

ここで,無次元係数Zは次のように与えられる.

$$Z = R_P^{0.6} u^* / v_s \tag{13}$$

R_p は粒径を用いた粒子レイノルズ数,*u**は摩擦速度で それぞれ次のように与えられる.

$$R_{p} = \sqrt{RgD_{s}} D_{s} / \upsilon \tag{14}$$

$$u^* = \sqrt{\left(\tau_b / \rho_b\right)} \tag{15}$$

式(12)~(15)の関係は、吹雪流などの雪粒子の連行係数 に対しても適切であることを示されている(福嶋ら,2002). 式(14)より,雪粒子の粒径 D。によって,連行係数 E。が変化す ることがわかる.雪粒子の粒径が変化するとその沈降速度 v。も変化するため,雪崩内部の雪量が変化し相対的に運動 エネルギーも増減する.したがって解析を行う上で雪粒子 の粒径の適切な設定が重要となる.

また,流れ型雪崩のモデルでは,雪の質量保存式は 以下のように表される.

$$\frac{d}{dt}CA = \lambda_f C_f V_f d_f - \lambda_e C_e V_e d_e + v_s (E_s - c_b \cos\theta) P_b$$
(16)

右辺第一項が前方積雪層からの雪塊の取り込みを表し,第二項が後方への離脱を表す.これらは無次元係数 $_{f}$, $_{e}$ によって制御されるため,流れ型雪崩のモデルでは $_{f}$, $_{e}$ の取り扱いも重要となる.

(4) 雪崩の流動幅について

雪崩の流動幅は式(5)によって解析される.式(5)は 三次元傾斜サーマルの実験によって得られた式であ り,単調に流動幅が増加していく様子しか再現でき ない.したがって,幾何学的形状が極端に複雑な斜面 を雪崩が流下する際には流動幅を精度よく再現する ことが困難になる.

また,式中の無次元係数 *a_B* の設定によって流動幅 *b_{max}*の数値解析結果が大きく変化するため,相対的に 式(6)より雪崩の高さなども変化する.したがって流 下経路の地形形状や雪崩の運動形態に適した*a_B*の設 定が必要となる. 4.結言

福嶋先生の提案されたモデルの概略を説明し、モ デル中に含まれる多くの仮定条件のうち、シミュレ ーション結果に及ぼす影響の大きなものをいくつか 整理した.これら仮定条件は何れも『雪崩の発生から 停止に至るまでの挙動には不明な点が多いため、こ こではの実験式により近似できるものと仮定 する』と説明がなされるという共通点を有する.これ は、雪崩の現地観測データがそれほど充実しておら ず、特に発達過程の雪崩の挙動に関するデータが無 いことに起因する.現地観測や実験などにより雪崩 の挙動が明確になり、モデル中に含まれる仮定条件 について実現象に即した形で精査することができれ ば、モデルの再現性及び汎用性を向上させることが 期待できる.

参考文献

- 1)福嶋祐介(1986): 粉雪雪崩の流動機構の解析,雪 氷,48-4,pp.189-194
- 2)福嶋祐介,早川典生(1992):三次元地形を考慮した粉 雪雪崩の数値解析,雪氷,54-1,pp.11-18.
- 3)大澤範一,福嶋祐介(2004):三次元地形上の二次元煙 型雪崩の流動モデル,雪氷,66-4, pp.473-483.
- 4)福嶋祐介,大澤範一(2007):一次元全層雪崩のシミュ レーション手法に関する研究,雪氷,69-3,pp.357 -368.
- 5)Beghin, P., Hopfinger, E.J. and Britter, R. E. (1981):Gravitational convection from instant- aneous sources on inclined boundaries, J. Fluid Mech., 107, pp.407-422.
- 6)Escudier, M. P., Maxworthy, T.(1973):On the motion of turbulent thermals, J. Fluid Mech., 61, pp.541-552.
- 7)Garcia, M. (1990): Depositing and eroding sediment driven flows: turbidity currents, St. Anthony Falls Hydraulic Lab., Univ. of Minnesota, Project Report, 306, pp.179.
- 8)福嶋祐介,菊地卓郎,西村浩一(2002):地吹雪におけ る雪の連行係数に関する考察,雪氷,64-5, pp.533-540.