(㈱東京建設コンサルタント) 〇秋山 浩一、伊藤 達平 国土技術政策総合研究所 岡本 敦、野村 康裕、奥山 悠木、秦 雅之

1. 背景

著者らは、予測項目を表層崩壊の発生場所に特化し、 地下水位を定常状態と仮定し、斜面安定解析により崩 壊発生危険度を評価する手法を提案してきた(田村ら、 2010)。これより、予測結果に及ぼす影響の大きいパラ メータである土層厚の空間分布を実測することで、表 層崩壊の発生場所を予測が可能となった。(内田ら、 2009)(以下、この方法を「H-SLIDER法」と呼ぶ)。一 方、長大斜面対策等のハード対策の実施において、土 砂生産量の算出は、既往崩壊地における斜面高と土砂 生産量等の関係などの経験的手法を用いていることが 多く、対象地域の土砂生産量が的確に評価されている とは言い難い。これより、H-SLIDER法等の物理モデル を用いた土砂生産量の実用化が重要であると考え、算 出手法の課題を整理し、物理モデルを用いた土砂生産 量の算出手法の高度化を行うことを目的とした。

2. 土質強度定数の設定における課題

土のせん断強度を示す土質強度(粘着力、内部摩擦 角)は、土壌サンプルを現場で採取し、CD 試験等によ り求めた値を用いていることが多い。一方、表層崩壊 は、土層内の最も弱い部位において発生し、土壌層中 に含まれる根や礫の影響を受けると考えられる。その ため、土壌サンプルで算出した土質強度が表層崩壊の 発生をコントロールしているか否かについては不明な 点が多い。実際、内田ら(2009)では、広島西部山系 の表層崩壊発生箇所に関する再現計算を行い、現地で 採取した土壌サンプルから求めた土質強度では十分に 表層崩壊の発生場所を説明できないことを示した。し かし、表層崩壊の発生をコントロールする土質強度は 崩壊発生に大きな影響を及ぼすにもかかわらず、その 設定手法は確立されていない。

3. モデル

3.1H-SLIDER 法の改良

本研究では、内田ら(2011) に示す降雨継続時間と降 雨強度から崩壊発生の可能性の有無を評価するモデル を用いた。モデルの基礎式は式1、式2のとおりであ る。式1は、Rosso et al. (2006)で示す定常降雨条件 下における地下水位の時間変化に関する解析解より地 下水位を求めるものである。なお、基岩面以下への浸 透を考慮せず、土層内の間隙率は一定で、不飽和土壌 の飽和度も一定と仮定している。式2は、H-SLIDER 法 同様、無限長斜面の安定解析で降雨開始からの時間 t経過した際の斜面の安全率 ($F_S(t)$)を算出し、崩壊発 生の可能性を評価するものである。ここでは $h_0=0$ と した。

$$\begin{aligned} h_w(t) &= \frac{Arh}{K_s \sin I} \Biggl[1 - \exp\Biggl(-\frac{1+e}{e-eS_r} \frac{K_s \sin I}{A} t \Biggr) \Biggr] \quad \vec{x} \downarrow 1 \\ &+ h_0 \exp\Biggl(-\frac{1+e}{e-eS_r} \frac{K_s \sin I}{A} t \Biggr) \end{aligned}$$

$$Fs(t) = \frac{c + \left[\frac{G_s + eS_r}{1 + e}h - \gamma_w h_w(t)\right] \cos I \tan \phi}{\frac{G_s + eS_r}{1 + e}\gamma_w h \sin I} \quad \exists \mathbb{Z} 2$$

ここで、 h_{r} は地下水深[m]、hは土層深[m]、tは降雨 開始からの時間[s]、Aは単位等高線長さあたりの基岩 面の集水面積[m²/m]、rは降雨強度[m/s]、 K_s は透水係 数[m/s]、Iは基岩面勾配、 h_o は降雨開始時の地下水深、 eは不飽和土壤(地下水面と地表面の間の土壤)におけ る土粒子の割合に対する間隙の割合、Srは不飽和土壤 における平均の飽和度(全間隙に対する水で満たされ ている間隙の割合)である。

3.2 粘着力(c)の設定方法

本研究では、秋山ら(2010)で示す斜面勾配と土層厚 および無限長斜面の安定解析結果から内部摩擦角に対 する粘着力の設定手法を改良して粘着力を設定した。 図-1 は北海道沙流川水系の支川総主別川の支渓流であ るシカルスナイ沢地区における基岩勾配と土層厚の関 係図に土層がそれぞれ完全に不飽和(土層と基岩の境 界面の間隙水圧が0の状態)および飽和(地表面の間 隙水圧が0の状態)の状態で安全率が1となる土層厚 を実績崩壊地の再現計算時のパラメータを用いて無限 長斜面の安定解析より求めたものである。理論上、一 点鎖線の間が表層崩壊の発生しうる領域であり、一点 鎖線より右上の領域は理論上、存在しない(崩壊して しまっている)領域である。図-1では、内部摩擦角よ り急勾配な範囲では、図中の一点鎖線上にいくつかの 地点のデータがプロットされるが、一点鎖線より右上 にはデータはプロットされない。秋山ら(2010)は、 内部摩擦角より急勾配な範囲で、不飽和の状態で安全 率が1となる土層厚と勾配ごとの土層厚の最大値と最 もよく一致する粘着力を逆推定することで、ある内部 摩擦角に対する粘着力としていた。この場合、検討対 象地点の少なくとも1点は必ず崩壊が発生することに

なる。一方、実現象では、崩壊発生降雨以前の降雨に 対しては斜面崩壊が発生していない。そこで、崩壊発 生前の降雨強度に対する安全率が1を下回ることがな いような粘着力を推定する必要がある。具体的には、 秋山ら(2010)にもとづく方法で設定した粘着力を用 いて*H-SLIDER*法で崩壊危険度が高い地点を5地点程度 抽出し、崩壊発生前10年間の最大短時間降雨強度に対 する安全率を式1、式2より求めた。次に、安全率が最 小となる地点の安全率が1となるように粘着力を逆推 定した。また、推定した粘着力と無限長斜面の安定解 析式より、土層がそれぞれ完全に不飽和および飽和の 状態で安全率が1となる土層厚(図中の実線)を算出 し、崩壊発生領域の見直しを行なった。

4. 試算

4.1 検討対象地区

検討対象地区は、北海道沙流川水系の支川総主別川 および宿主別川の4支渓(右支川、三ノ沢、シカルス ナイ沢、ペンケルナイ沢)とした。各地域では2003年 8月台風10号(最大時間雨量75mm(1h)、175mm(3h)、 235mm(6h)、248mm(9h)、305mm(12h)、378mm(24h)、旭 観測所)で表層崩壊が発生し、崩壊地がそれぞれ2、2、 3、5箇所確認されている。

4.2 土層厚の計測および地形量の算出

土層厚空間分布調査では、簡易貫入試験を概ね 10m 間隔で、それぞれ 349、277、336、331 地点実施した。 崩壊のおそれのある土層厚は、簡易貫入試験結果をも とに地表面より Nd 値が 20 となる深さまでの厚さ(鉛 直方向)と設定した。また、崩壊地内の土層厚は、崩 壊地内の横断図を作成し、崩壊地の斜面形状から崩壊 発生前の土層厚を推定した。なお、土層厚の設定方法 は、内田ら(2009)を参照されたい。地形量は、国土 地理院が提供している基盤地図情報(数値標高モデル) の 10mDEM を Natural Neighbor 法で内挿した 5mDEM を 用いて算出した。地形量は基岩面地形を地表面地形お よび土層厚から推定し、D-Infinity Flow Direction 法 を用いて基岩面の勾配および集水面積を算出した。

4.3 土砂生産量の算出

粘着力は、検討対象地区における崩壊危険度が高い 地点5地点を対象に崩壊発生前最大短時間降雨強度 (1h, 3h, 6h, 9h, 12h, 24h)に対する安全率を式1、式2で 算出し、安全率が最小となる地点において安全率が1 となるように逆推定した。表層崩壊発生場所の再現計 算は、崩壊発生時の短時間降雨強度(1h、3h、6h、9h、

12h、24h)に対する安全率を式1、式2でメッシュごと に算出した。崩壊土砂量は、各メッシュの短時間降雨 強度に対する安全率のうち、最小値で安全率が1を下 回るメッシュを抽出し、メッシュの面積に土層厚を乗 じて算出した。

5.結果とまとめ

崩壊発生場所の再現計算結果は図-2に示すとおりで あり、対象19斜面の内、崩壊地11斜面、非崩壊地4 斜面で実績が再現され、的中率(計算崩壊地・非崩壊 地斜面数/全体斜面数)は79%となった。これより、崩 壊発生場所の予測は精度良く算出され、崩壊地および 非崩壊地を分別することができた。また、土砂生産量 として、各メッシュの土砂生産量算出結果を斜面単位 で集計し、実績値と比較した結果を図-3に示した。算 出した土砂生産量は実績より小さいが、土砂生産量の オーダーは合っていた。また、実績値が大きい斜面ほ ど計算値も大きく評価されており、土砂生産量の順位 は実績と概ね整合していた。土砂生産量の予測は、① 粘着力推定時の検討対象地点の設定、②Cバンドレーダ 一雨量等の降雨データの入力データの詳細データの活 用、③地下水位の初期値の設定方法などの改良で更な る精度向上が可能と考えられ、今後の課題としたい。 6. 参考資料

1)田村ら;土木研究所報告(214),47-61,2010.
2)内田ら;砂防学会誌 63(1),23-31,2009.
3)内田ら;平成22年度砂防学会概要集,p130,2011.
4)秋山ら:平成22年度砂防学会概要集,p114,2010.

図-2 崩壊危険度評価結果(実績再現)