株式会社東京建設コンサルタント 正会員 〇田所 弾

1. 序論

石礫河川は様々な大きさ・形状の粒子から構成され ており、大きな粒子は容易には動かず、間欠的な運動 をとり、多くの粒径が移動する砂礫河川とは異なる. 石礫河川の流砂量を説明するためには、流砂運動の素 過程に及ぼす粒径と形の効果を明らかにする必要が ある.砂礫河川の素過程に基づく流砂量式として式 (1)¹⁾がある.

$$q_{Bij} = f(d_{ij}) \frac{A_{3}d_{ij}^{3}}{A_{2}d_{ij}^{2}} \cdot \Lambda_{ij} \cdot p_{s_{ij}}$$
(1)

ここに *i*: 粒径 , *j*: 粒子形状, p_s : 離脱確率(Pick-up rate), Λ : 移動距離(Step length), A_3d^3 : 粒子体積, A_2d^2 : 上からの粒子投影面積, $f(d_{ij})$: 面積占有率である.

福田ら²⁾は,流れと土砂の三次元運動を解析できる 数値移動床実験水路を開発した.この水路は,土石流 等の流動を適切に評価できるモデルであることが示 されている³⁾.本研究では,数値移動床実験を行い, 球形単独と,球形と石礫の混合の2つの条件下で流砂 量と流砂運動の素過程を計測し,石礫河川の流砂量に 及ぼす,粒子形状・粒度分布の効果について検討する.

2. 数値移動床水路の概要

図-2に示す粒度分布(40mm 青色,50mm 赤 色,70mm 水色,90mm 緑色,120mm 黄色)となるよ うに図-3に示す5種類の粒子形状を均等な数に設定し, 流路に敷き詰め,数値実験を行った.粒子形状を概略

中央大学研究開発機構 フェロー 福岡 捷二 評価する方法は幾つかあるが,本文では式(2)で示され

新福の第の法は残りがあらかが、年文ではと(2)でかされ る粒子の三軸(短径・中径・長径)によるShape Factor を用いる.このS.F.は、値が1に近いほど球形に近い. 5形状のS.F.の値は、図-3のようになり、形状1が球形 に一番近く、その他は似かよったS.F.の値を持つ.石 礫粒子の粒子径は同一体積の球の直径として定義さ れている.水路上流端で0.5 m³/s の一定流量を与えた. 水路長は15mである.給砂は下流端を通過した粒子を 同時刻に上流 x = 1-2 mの範囲にランダムに投下させ る.数値解法は福田ら²⁾の解析法を用い、流れは Euler 的に、粒子は剛体として Lagrange 的に解析する.計 算法の詳細は文献²⁾を参照されたい.

3. 流砂量に及ぼす粒子形状の影響

数値移動床実験で 2m 間隔・60s 間計測された各 粒径・形状の流砂量の時空間平均の値を図-4 に示 す.5粒径の粒子群を用いた混合実験の流砂量を基準 にして流砂量を比較するため,球単独実験の流砂量を 1/5倍して示している.いずれの実験においても,大 きい粒子・球形に近い粒子形状ほど流砂量が大きくな る.混合実験では球形単独実験に比べ球形の流砂量が 減少している.これは球とは異なる石礫粒子のかみ合 わせ効果により,球粒子が動きにくくなったためであ る.

4. 流砂運動の素過程に及ぼす粒子形状の影響

数値移動床実験の結果を用いて,離脱確率等,式(1) に示す各素過程に及ぼす粒子形状・粒度分布の影響を

キーワード 数値移動床水路,粒子形状,粒度分布,流砂運動の素過程,流砂量 連絡先 〒530-0042 大阪市北区天満橋 1-8-63 東京建設コンサルタント 関西本社 TEL 06-7636-1152 検討し,最後に各素過程と流砂量の関係について検討 する.

図-5 は離脱粒子が河床表層から抜け出す際の水路上 から見た粒子投影面積 (A_2d^2) の同粒径の球に対する 投影面積 $(\pi d^2/4)$ の割合 $(A_2d^2/(\pi d^2/4))$ を示す.球か ら異なる形状の粒子ほど平らな面(短径)を上に向け 重心を低くして停止するため,面積割合 $(A_2d^2/(\pi d^2/4))$ が大きくなる.さらに大きい粒子ほど粒子形状による A_2d^2 の差が顕著に出ている.これは大きい粒子は小さ い粒子に比べて相対的に周りの粒子配置の影響を受 けにくく,安定な向きをとりやすいためと考えられる.

河床表面に停止して存在する各粒径・形状毎の粒子 について、上から見た占有する面積の中で、単位時間 当りに始動した各粒径・形状粒子の上から見た面積の 比で、 $p_s(1/s)$ を評価した. 図-6 に p_s の計測結果を示 す.小さい粒子では A_2d^2 が大きい粒子ほど p_s が小さ くなる傾向を示すが、大きい粒子の p_s はほとんど一様 の値をとる.

Λは粒子が動き出してから停止するまでのx方向移動距離と定義され、大きい粒子のΛは長いため、数値移動床水路が十分長くないと計測出来ない.ここでは +分な標本数を計測することができる小さい粒子

(d=40,50mm) の *A* を各粒径で無次元化し, 図-7 に 示す. 球から異なる形状の粒子ほど, *A* は大きくなる ように見えるが, 形状 3, 4 についてはこの傾向を示 さない. したがって粒子の無次元 Step length は, 粒子 形状によって, それほど変わらないとも読むことがで きる. この結果については更に検討が必要である. これまで計測した流砂運動の素過程を用い,式(1) から算定した流砂量と,数値移動床水路で直接計測し た粒径・形状別流砂量の比較を図-8 に示す.十分な 数の粒子について素過程が計測できた 40,50mm 粒子 に関しては,概ね近い値を示す.最後に,流砂量とそ の素過程を構成する Pick-up rate と A_2d^2 , Step length の関係について考察する.大きい粒子も小さい粒子も, 球とは異なる形状ほど A_2d^2 は大きくなり, p_s はそれ に比べると大きくは変化しない.よって単位面積単位 時間当たりの離脱粒子数 p_s/A_2d^2 は,球とは異なる形状 ほど少なくなる.一方, Λ は粒子形状毎にそれほど異 なる値をとらない.離脱粒子数 p_s/A_2d^2 と Λ の積では, 離脱粒子数に粒子形状の効果が大きく表れるため,流 砂量は球とは異なる形状ほど小さくなる傾向を示し た.

5. 結論

粒径・形状ごとに流砂運動の素過程は異なるので, 石礫河川での流砂量を推定するためには,各形状粒 径が流砂運動の素過程に及ぼす影響を評価すること が重要である.

参考文献

 辻本哲郎,後藤仁志,中川博次:時間軸上に展開された 非平衡流砂過程のモデル化,土木学会論文集,1992.
福田朝生,福岡捷二,内田龍彦:移動床数値実験水路を 流下する石礫粒子群の三次元運動,土木学会論文集 B1, 2013.

3) 福田朝生,福岡捷二:土石流水路実験結果を用いた数値 移動床水路による高濃度粒子群と水流の力学的相互作用の 検討,土木学会論文集 B1,2016.

図-8 流砂運動の素過程から算定した流砂量と数値移動床水路で計測した流砂量の比較