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Abstract In this study, we derive a nonlinear estimation mechanism for the time-invariant
parameters of the Black-Scholes process by representing them as system state variables. The
efficacy of this approach is validated through empirical analysis using public available stock data.

1 Introduction

Parameter estimation for stochastic differential equa-
tions is an important research area with numerous ap-
plications. This field encompasses not only linear sys-
tems but also nonlinear ones. In this paper, we fo-
cus on the Black-Scholes process (BSP) because stock
data is readily available from various websites. The
BSP model has been extensively studied, particularly
in the context of modeling volatility changes. Several
models, such as the CEV, SABR, and GARCH mod-
els, are based on the BSP, underscoring the significance
of volatility modeling [1]. Rather than attempting to
improve the structure of these existing models, we con-
centrate on developing more effective methods for esti-
mating their constant parameters. Thus, our objective
is to establish a parameter estimation method under
the assumption that these parameters are constant.

2 Drift Parameter Estimation

The drift and volatility parameters estimations are
developed within the framework of Kalman Filter. The
Black-Scholes Process, which is the model of stock prices
and ETF, is as follows[2],

dS(t) = μS(t)dt+ σS(t)dw(t), S(0) = S0, (1)

where t ∈ [0,∞)，S(t)(> 0) is a series of stock prices or
price of ETF，w(t) is standard Browian Motion Pro-
cess, μ (0 < |μ| < ∞) is a constant drift parameter and
σ (0 < |σ| < ∞) is a constant volatility parameter.
We set x(t) = [μ σ]T and the observation and esti-

mation mechanism as follows,

dy(t) = h1(t)x(t)dt+ h2(t)x(t)dw(t) (2)

dx̂(t|t) = K̃(t) [dy(t)− h1(t)x̂(t|t)dt] , (3)

x̂(0|0) = x̂0,

where y(t) = S(t) is observation data, dx(t)/dt = 0,
h1(t) = [S(t) 0], h2(t) = [0 S(t)], x̂(t|t) = E{x(t)|Yt} =
[μ̂(t|t) σ̂(t|t)]T , K̃(t) = [K̃1(t) K̃2(t)]

T is an estimation
gain vector and where Yt = {y(τ), 0 ≤ τ ≤ t}.
(3) is equivalent to the following as

dμ̂(t|t) = K̃1(t) [dy(t)− S(t)μ̂(t|t)dt] , (4)

dσ̂(t|t) = K̃2(t) [dy(t)− S(t)μ̂(t|t)dt] . (5)

Since K(•) is independent of μ and σ, σ̂(•|•) is not
updated by (5). Therefore, our strategy must be mod-
ified to estimate the unknown parameter σ. This is

because, by analogy with the Kalman filter, K̃(•) is
independent of both μ and σ. The novle strategy is
as follows. Initially, we construct an estimation mech-
anism for μ, assuming σ is given. Subsequently, we
develop another estimation mechanism for σ, and the
estimated σ is used in the estimation mechanism for μ.
Assuming σ is given, we set the following observation

and estimation mechanisms,

dy(t) = S(t)μdt+ S(t)σdw(t), (6)

dμ̂(t|t) = K(t) [dy(t)− S(t)μ̂(t|t)dt] , (7)

μ̂(0|0) = μ̂0,

where dy(t) (= dS(t)) is observation data, K(t) is es-
timation gain and μ̂(t|t) = E{μ| Yt}, and where Yt =
{y(τ), 0 ≤ τ ≤ t}.
Therefore, we have formulated the parameter estima-

tion problem as a state estimation problem. In order to
have the estimation gain in (7), we set the estimation
error covariance P (t|t) as follows,

P (t|t) := E
{
[μ− μ̂(t|t)]2

∣∣∣Yt

}
. (8)

Assuming the parameter estimation is optimal in some
respect, then the dP (t|t) = P (t + dt|t + dt) − P (t|t)
is obtained as follows with E {•|Yt+dt} ∼= E {•|Yt},
E{dw(t)|Yt} = 0, E{dw2(t)|Yt

}
= dt, dμ/dt = 0 and

μ̂(t+ dt|t+ dt) ∼= μ̂(t|t) + dμ̂(t|t),
dP (t|t) = −2K(t)S(t)P (t|t)dt+K2(t)S2(t)σ2dt

+o(dt
3
2 ). (9)

From (9), we have following differential equation as

dP (t|t)
dt

= −2K(t)S(t)P (t|t) +K2(t)S2(t)σ2. (10)

The estimation gain K(t) is designed to achieve mini-
mum the estimation error variance P (t|t) satisfied (10).
Next, we set the cost functional V [t, P (t|t)] as following
scalar function,

V [t, P (t|t)] := min
K(τ)
0≤τ≤t

P (t|t). (11)

Substituting (10) into (11), we have

V [t, P (t|t)]

= min
K(τ)
0≤τ≤t

{
P (0|0) +

∫ t

0

dP (τ |τ)
dτ

dτ

}
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= P (0|0) + min
K(τ)
0≤τ≤t

{∫ t

0

[−2K(τ)S(τ)P (τ |τ)

+K2(τ)S2(τ)σ2
]
dτ

}
.(12)

While the dynamic programming is a common method
to solve the second term on the right-hand side of
(12), we employ the calculus of variations in this study.
Therefore, we proceed to solve the following equation.

∂

∂ε

∫ t

0

{−2[K(τ) + εQ(τ)]S(τ)P (τ |τ)

+[K(τ) + εQ(τ)]2(τ)S2(τ)σ2}dτ
∣∣∣
ε=0

= 0, (13)

where Q(τ) is in the same mathematical class of the
optimal K(τ) with Q(0) = Q(t) = 0 [3]．
From (13), we derive the following identity with re-

spect to Q.∫ t

0

Q(τ)
{
K(τ)S2(τ)σ2 − S(τ)P (τ |τ)} dτ = 0.(14)

Consequently, we obtain a relation between K(τ) and
P (τ |τ), which is given by

K(τ) =
P (τ |τ)
S(τ)σ2

(0 ≤ τ ≤ t). (15)

From (10) and (15), the following differential equation
is hold,

dP (t|t)
dt

= −P 2(t|t)
σ2

, P (0|0) = P0. (16)

The solotion of (16) is as follows,

P (t|t) = P0σ
2

P0t+ σ2
. (17)

The convergence of μ̂(t|t), which is lim
t→∞P (t|t) = 0, is

shown as follows,

lim
t→∞P (t|t) = lim

t→∞
P0σ

2

P0t+ σ2
= 0. (18)

Assuming lim
t→∞ E{•|Yt} = E{•}, from (8), (18) can be

expressed as follows,

l.i.m.
t→∞ μ̂(t|t) = μ. (19)

Substituting (15) and (17) into (7), we consequently
obtain the following estimation,

dμ̂(t|t) = P0

S(t) (P0t+ σ2)
[dy(t)− S(t)μ̂(t|t)dt] .(20)

The estimation mechanism for μ is derived assuming
σ is given. Since σ is unknown, we must use estimated
σ which is not always true value of σ. Consequently, we
assess the impact on the estimate of μ when employing

a value of σ that deviates from its true value. Taking
the partial derivative of both sides of equation (17)
with respect to σ2, we obtain the following equation

∂P (t|t)
∂σ2

=
P 2
0 t

(P0t+ σ2)
2 . (21)

From (21), we have

lim
t→∞

∂P (t|t)
∂σ2

= lim
t→∞

P 2
0 t

(P0t+ σ2)
2 = 0 (22)

∂P (t|t)
∂σ2

∣∣∣∣
t=0

=
P 2
0 t

(P0t+ σ2)
2

∣∣∣∣∣
t=0

= 0. (23)

Taking the partial derivative of both sides of equation
(17) with respect to t, the following equation holds,

∂

∂t

(
∂P (t|t)
∂σ2

)
=

P 2
0 σ

2 − P 3
0 t

(P0t+ σ2)
3 . (24)

From above equations, (21) takes the maximam value
of P0/4σ

2 when t = σ2/P0.
We have shown that σ in equation (20) can be re-

placed with some suitable approximation.

3 Volatility Parameter Estimation

The volatility parameter estimation is developed sep-
arate from Kalman Filter. Applying Itô formula (1),
we derive the following expressions.

E
{
(d [lnS(t)])

2
}
= E

{[(
μ− σ2

2

)
dt+ σdw(t)

]2}

= σ2dt+ o(dt
3
2 ). (25)

As dt → 0, the following equation holds.

σ2dt = E
{
(d [lnS(t)])

2
}
. (26)

Now we define the estimated σ2 as follows,

σ̂2(t|t) := E{σ2|Yt

}
. (27)

Applying the operator E{•|Yt} to both sides of (26),
we obtain the following equations with the property of
E{E{•} |Yt} = E{•|Yt}.

σ̂2(t|t)dt = E
{
(d [lnS(t)])

2 |Yt

}
(28)

dσ̂2(t|t)dt := σ̂2(t+ dt|t+ dt)dt− σ̂2(t|t)dt
= E

{
(d [lnS(t+ dt)])

2 |Yt+dt

}
−E

{
(d [lnS(t)])

2 |Yt

}
. (29)

In (28), replacing the expectation operation with the
arithmetic mean, we obtain the following equation.

σ̂2(t|t)dt ∼= σ̂2(tN |tN )Δt
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=
1

N

N∑
i=1

[lnS(ti)− lnS(ti−1)]
2
, (30)

where t0 < t1 < t2 < · · · < tN = NΔt = t, and where
tj − tj−1 = Δt (j = 1, 2, · · · , N).
From (29) and (30), we obtain the following esti-

mation mechanism with y(t) = S(t) and d[ln y(t)] =
ln y(t+ dt)− ln y(t).

dσ̂2(t|t) ∼=
∑N+1

i=1 [lnS(ti)− lnS(ti−1)]
2

(N + 1)Δt

−
∑N

i=1 [lnS(ti)− lnS(ti−1)]
2

NΔt

∼= [ln y(tN+1)− ln y(tN )]
2

(N + 1)Δt
− σ̂2(tN |tN )Δt

(N + 1)Δt

∼= 1

t+Δt

{
(Δ[ln y(t)])

2 − σ̂2(t|t)Δt
}

(31)

σ̂2(0|0) = σ̂2
0 .

Moreover, from eq. (31), we have discrete equation:

σ̂2(tN+1|tN+1)

=
Nσ̂2(tN |tN )Δt+ [ln y(tN+1)− ln y(tN )]

2

(N + 1)Δt

=
[ln y(tN+1)− ln y(tN )]

2

(N + 1)Δt
+

N

N + 1
σ̂2(tN |tN ).(32)

As σ̂2(t|t) < ∞ comes from |σ| < ∞, (31) implies
that lim

t→∞ dσ̂2(t|t) = 0 i.e. σ̂2(t|t) is the Cauchy se-

quence. Assuming lim
t→∞ E{•|Yt} = E{•}, from (26) and

(28), we have the following equation

lim
t→∞ σ̂2(t|t) = σ2. (33)

The discrete representation of eq. (20) with σ̂(•|•)
is as follows:

μ̂(tN+1|tN+1) =

(
1− P0Δt

P0tN + σ̂2(tN |tN )

)
μ̂(tN |tN )

+
P0 [y(tN+1)− y(tN )]

[P0tN + σ̂2(tN |tN )] y(tN )
. (34)

Equation (34) also shows the convergence of μ̂(tN |tN ).
Although equations (20) and (31) have different forms

of observation data, they have the same form as an es-
timation mechanism. Therefore, we attempt to recon-
struct them into a single estimation mechanism. Set-

ting θ̂(t|t) = [
μ̂(t|t) σ̂2(t|t)]T , we formally reconstruct

the estimation mechanisms as follows:

dθ̂(t|t) = Kθ(t, θ̂(t|t))
{
dz(t)−H(t)θ̂(t|t)dt

}
(35)

θ̂(0|0) := [
μ̂0 σ̂2

0

]T
(0 < t < ∞)

where Kθ(t, θ̂(t|t)) = diag

{
P0

S(t)[P0t+ σ̂2(t|t)] ,
1

t

}
,

dz(t) =
[
dy(t) (d[ln y(t)])

2
]T

andH(t) = diag {S(t), 1}.

The convergence of θ̂(t|t) is guaranteed by equations
(18) and (33).

4 Simulation Experiments

We used weekly data, because the data sampling in-
terval is consistent. The data sampling interval dt is
7/365 ∼= 0.0192[year]. Since the S&P500 market index
has easily accessible data, we use them. On March 4,
1957, the S&P 500 Index has begun operating in its
current form.
It is widely reported that the expected return and

volatility of the S&P500 are approximately 0.1 and
0.2, respectively. Consequently, in (1), we set the true
values to μ = 0.1 and σ = 0.2 in order to generate
stock price data. We calculated the approximate val-
ues based on data provided in [4]. The initial values
are set S(0) = 44[$], which is the price of the S&P500
on Mar. 4, 1957, μ̂0 = 0.1, σ̂(0|0) = 0.2 and P0 = 0.1.
We set the simulation period to 70 years, correspond-
ing to the historical timeframe of the S&P 500. The
simulation results are illustrated from Figures 1 to 4.
Subsequently, we estimate the drift parameter μ and

the volatility parameter σ using actual stock prices.
These data were obtained from a publicly available
website [4]. March 4, 1957, is set as t = 0.
The estimation results are illustrated from Figures

5 to 8. Since the Black-Scholes process does not fully
model stock price movements, parameter estimates de-
rived from real data fail to converge to specific values.

5 Conclusing Remarks

We derived two distinct estimation mechanisms for
the drift and the volatility parameters in the Black-
Scholes process. Furthermore, we successfully inte-
grated the two estimation mechanisms into a single
framework. As a result, the estimated parameter vec-
tor has been changed from [μ σ]T to [μ σ2]T , and
the observation data has been changed from dy(t) to
[dy(t) (d[ln y(t)])2]T . We consuquently derive a non-
linear estimation of the parameter [μ σ2]T , instead of
[μ σ]T , for the Black-Scholes Process.
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Figure 1: Generated Stock Prices.

Figure 2: Estimation of μ.

Figure 3: Estimation of σ.

Figure 4: Estimation Error Variance of μ̂.

Figure 5: Stock Prices of S&P 500.

Figure 6: Estimation of μ (S&P500).

Figure 7: Estimation of σ (S&P500).

Figure 8: Estimation Error Variance of μ̂ (S&P500).

 221


